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Mixing enhancement in a mixing layer is considered in terms of a ‘vortex generator’
that uses fluid dynamically generated counter-rotating longitudinal vortices rather
than explicit winglets or similar devices. This view is reached through considering
the centrifugal instability of weak initial Görtler vortices on a slightly concave wall
that are allowed to develop to their various nonlinear stages through selecting the
cutoff lengths of the trailing edge prior to their release into the mixing region. These
vortices are released from one side of the (say, upper) stream in the present work. The
quantitative entrainment properties of the longitudinal vortices are studied to select
an optimal trailing-edge cutoff for fixed upstream conditions. As the vortices develop
along the wall, they are intensified because of the centrifugal instability mechanism
and because of the work done by the Reynolds stress of the vortices against the local
mean flow rate of strain; simultaneously, the region of strong streamwise vorticity
moves away from the wall. This selection process is explained through a balance
between the vorticity strength and proximity to the lower stream when the trailing
edge is cut off: it is shown, therefore, that vortices of relatively modest strength and
kinetic energy that are close to the interface separating the two streams provide mixing
properties superior to stronger vortices located too far from the interface. Energy-
balancing mechanisms and the stretching of the initial interface are studied, as are the
effects of the velocity ratio and the spanwise wavelengths other than the fundamental.
In order further to enhance mixing by exploiting the inherent secondary instability of
primary steady longitudinal vortices, the most amplified secondary instability of the
optimal-trailing-edge cutoff situation, which is the sinuous mode, is studied in detail
in terms of the nonlinear development and modification of the steady vortical flow.
Local energy-exchange mechanisms are studied, as are the mixing properties of the
modified steady flow, which are shown to be significantly improved compared to the
unmodified steady flow. Though the initiation of steady longitudinal vortices relies
on centrifugal instability upstream, such vortices are able to develop self-sustaining
and amplifying properties through the Reynolds stresses in the mixing region even
without centrifugal instability reinforcement. The secondary instability is initiated
and sustained entirely through its own three-dimensional Reynolds stress properties,
which work against the three-dimensional rates of strain in the entire steady flow.
This contrasts with initially generated potential-like vortices that decay downstream
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in the presence of dissipative mechanisms without the production mechanisms due to
the Reynolds stresses.

1. Introduction
Longitudinal vortices are important in scientific and industrial applications for

the enhancement of mixing and scalar transport. The methods of generating such
vortices include tabs (Bradbury & Khadem 1975; Zaman, Reeder & Samimy 1994)
and winglet-type vortex generators (Fiebig 1996; Carletti & Rogers 1995) inserted
into the flow field, lobed wall geometry in exit flows (Crouch, Cooughlin & Paynter
1977; Presz, Gousy & Morin 1986; Tillman, Patrick & Paterson 1991; Eckerle,
Sheibani & Awad 1992; McCormick 1992; McCormick & Bennett 1994; Yu, Yeo
& Teh 1995; Tsui & Wu 1996), ramp nozzles (Yu et al. 1992), and swirl generators
(Naughton & Settles 1992). Secondary flows and lobed fuel injectors are useful in
combustion systems (Schadow et al. 1989; Swithenbank et al. 1989; Rao & Heiba
1990), particularly to control the sequence of mixing and combustion in order to
lower pollutant levels from air-breathing aero-engines (Smith et al. 1997; Strickland,
Selerland & Karagozian 1998).

DeBonis (1992) simulated the flow field of a two-dimensional mixer ejector noz-
zle. The temperature profiles obtained showed mushroom-like structures in the iso-
temperature contours that strongly resemble the iso-streamwise velocity contours in
Görtler vortices, as expected from similarity considerations, at least for an incom-
pressible flow (Liu & Sabry 1991). Waitz et al. (1997) present a review, primarily
of work associated with that thirteen-author paper. Grosch et al. (1997) numerically
simulated the presence of small tabs in a hot supersonic two-dimensional jet, using an
empirical relation to model the tabs by introducing as upstream condition a pair of
incompressible counter-rotating vortices. As expected, these steady flow simulations
showed that mixing was enhanced.

Goldstein & Mathew (1993) made a theoretical study of the effect of weak stream-
wise vortices in the free stream on the mixing layer in the large-Reynolds-number
limit. They ignored the upstream boundary layer on the wall. The three-dimensionality
of the vortices did not generate strongly nonlinear ‘mushroom’ structures, as in Lee
& Liu (1992). In the present problem, in contrast to Goldstein & Mathew (1993), the
wall boundary layer is essential to the development of the initial conditions for the
mixing region. The nonlinear advection effect of the longitudinal vortices in contort-
ing the iso-scalar lines at the start of the mixing layer, and its subsequent nonlinear
development in the free-flow region, bring into contact significant additional surface
areas of the two fluids for enhanced entrainment and mixing.

The insertion of objects into the flow and the deformation of trailing edges for
longitudinal vorticity generation will undoubtedly introduce associated penalties in
applications of thrust loss, form and skin-friction drag increase and increased pressure
drop requirements. Zaman et al. (1994) concluded that the net thrust loss is about
1% to 1.5% per tab. The skin-friction losses over lobed mixers are undoubtedly
greater that those on a flat plate because of increased surface area. This realization
suggests the exploration of mixing enhancement through longitudinal vortices arising
from flow instabilities rather than from fixed-geometry hardware. In fact, Novopashin
& Perepelkin (1989) discussed the importance of ‘naturally’ occurring longitudinal
vortices in mixing enhancement in an underexpanded supersonic jet. These vortices
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were induced by roughness inside the nozzle and subsequently amplified by curvature
effects in the initial region of the underexpanded jet. The fact that such small vortices
can play a large role in mixing enhancement suggests that well-controlled, strongly
nonlinear Görtler vortices could be an efficient mechanism for mixing enhancement
owing to the transport properties in the cross-sectional plane associated with the
mushroom-like iso-streamwise velocity and iso-scalar structures. The infusion of
longitudinal vortices, by whatever means, into an otherwise two-dimensional mixing
region essentially short-circuits the development of wavy unstable disturbances of
the type reviewed by Ho & Huerre (1984) in which the disturbance vorticity axis is
normal to the main shear.

It is well-known that longitudinal vortices are also the product of two-dimensional
free-shear-flow instabilities, which eventually develop in the downstream region after
the development of two-dimensional Kelvin–Helmholtz instabilities, as revealed by
the flow visualization studies of Lasheras & Choi (1988); these workers also perturbed
the predominantly two-dimensional shear layer by periodically deforming the trailing
edge in the streamwise and the normal directions and produced more or less distinct
spanwise and streamwise ‘vortex tubes’. Wang (1984) studied experimentally the effect
of curvature on a mixing layer as it issues into a curved channel. In this case,
the two-dimensional instabilities preceded the development of longitudinal vortices
attributable to centrifugal instability. Similar experiments were performed by Karasso
& Mungal (1997) in a mildly curved liquid shear layer. In general, longitudinal
vortices eventually developing from perturbed Kelvin–Helmholtz shear instability
are stretched out far downstream in terms of the local momentum or shear layer
thicknesses, so that their utility in providing rapid mixing over compact streamwise
distances is severely limited. For this reason, curved mixing layers are not the subject
of interest here, even in its nonlinear development (this subject, however, has been
the subject of studies by numerous other authors (Margolis & Lumley 1965; Liou
1994; Otto, Jackson & Hu 1996)). These predominantly two-dimensional instabilities
are in contrast to the present studies, where three-dimensional flow structures and
instabilities are developed at the outset and released into the mixing region.

The aim of this paper is to study the use of fluid-dynamically generated longitudinal
vortices, initiated before release into the mixing region, in promoting mixing enhance-
ment behind the trailing edge. While the initiation and nonlinear development of the
longitudinal vortices in the wall region rely on centrifugal instability, the released
vortices sustain themselves via the Reynolds stress energy-conversion mechanism in
the free-shear-flow region. This appears to be a novel concept for mixing enhancement
that could replace explicit vortex generators and reshaped lobed nozzle exits.

In the present work, the mixing dynamics are dominated by longitudinal vortices
of the Görtler type. Through a scale analysis similar to that for wall-bounded flow
(Hall 1983, 1988; Floryan & Saric 1982; Saric 1994; Liu & Sabry 1991), a system of
parabolized, nonlinear differential equations for the free mixing region is obtained.
Although not addressed explicitly, Görtler vortices on the wall upstream are assumed
to be generated from a controlled roughness distribution; Denier, Hall & Seddougui
(1991) showed how the most amplified linear mode is related to the forcing roughness.

For ease in exposition of the basic concepts, the flow is assumed laminar and
incompressible, since coherent structures in turbulent shear flows (Liu 1988) have
similar instability mechanisms. Previous work (Liu & Sabry 1991; Liu & Lee 1995)
has discussed the analogy between streamwise momentum and scalar transport. The
efficiency of mixing is measured through the downstream development of a local
mixing efficiency related to the entrainment process, the mixedness parameter and
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the stretching of the interfacial surface between fluids originally in the upper and
lower streams. The paper has two parts: the first concerns the effect of steady
three-dimensional vortices on mixing in which an optimum trailing-edge cutoff is
selected, and the second concerns the excitation of secondary instability in the optimal
configuration of the steady flow problem and its role in mixing enhancement.

The numerical algorithm for the present problem is developed from the artificial-
compressibility method of Chorin (1967); it is used both for recomputing the wall-
bounded flow of Lee & Liu (1992) to provide initial conditions for the trailing-edge
cutoff and for determining the downstream mixing flow.

The outline of this paper is as follows: the steady flow problem is formulated
in § 2; in § 3 the results are given and discussed for the steady flow field structure
of the longitudinal vortex in the mixing region for various trailing-edge lengths,
and these results are used to optimize the mixing parameters, interfacial length
stretching, particle path and the disturbance energy. In § 4 the nonlinear description of
secondary instability is formulated, including the scaling leading to simpler parabolic
equations. Results for the unsteady problem are presented in § 5, including structural
features of the secondary instability, its modification of the steady flow through the
Reynolds stresses, mixing enhancement properties, energy-balancing mechanisms, and
a sequence of time oscillations of the iso-streamwise velocity contours, similar to iso-
scalar contours in flow visualization at a downstream cross-section (Peerhossaini &
Wesfried 1988). Concluding remarks and possible extensions appear in § 6.

2. Formulation and discussion of the steady flow problem
The scale analysis leads to nonlinear parabolic partial differential equations for

Görtler flows for boundary layers that are thin relative to the radius of a slightly
curved wall. This system of equations was given in Floryan & Saric (1982) and Hall
(1983, 1988) (see also the review article by Saric 1994).

Since the nonlinearly developed longitudinal vortices from upstream weak Görtler
vortices serve as initial conditions for the downstream mixing flow, the scale analysis
lead to the same nonlinear parabolic partial differential equations in the mixing region
as for the wall-bounded flow upstream of the trailing edge (just as laminar boundary
layers and mixing layers are described by the same partial differential equations).

The flow at the end of the slightly curved wall exits tangentially at the trailing
edge and thus the Görtler centrifugal mechanism is absent in the mixing region.
However, flow inertia or memory would persist through the presence of the nonlinear
longitudinal vortices into the mixing region. Unlike potential vortices, the longitudinal
vortices in the mixing region are sustained by their three-dimensional Reynolds
stresses, which extract energy from and hence modify the basic flow.

The nonlinear momentum problem for the generation of longitudinal vortices in
wall-bounded flow is characterized by mushroom-like structures for the total stream-
wise velocity component (see for instance, Swearingen & Blackwelder 1987; Sabry
& Liu 1991; Lee & Liu 1992). It is of interest that, because of the large-Reynolds-
number scaling, the streamwise pressure gradient does not appear in the streamwise
X-momentum equation, thus rendering it identical to the transport equation for tem-
perature or the binary diffusion equation in incompressible flow (Liu & Sabry 1991).
The momentum problem, which is three-dimensional, is nonlinear, but for an incom-
pressible flow the momentum problem is solved first and is then presumed known, so
that the heat and mass transport equation is linear (Liu & Lee 1995).

To account conveniently for the upstream boundary-layer effects in the generation
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Figure 1. Schematic of the mixing enhancement configuration.

of longitudinal vortices, we use the normalizing scales of the wall region for the mixing
region. Figure 1 shows a schematic diagram of the nomenclature. The parameters in
the momentum problem include the dimensionless wavenumber β, made dimensionless
by δ0, and the Görtler number G = (U0δ0/ν)(δ0/R)1/2, where δ0 = (νX0/U0)

1/2 is a
normal length scale, U0 is the free-stream velocity, ν is the kinematic viscosity and
R is the wall radius. In the following, X,Y , Z are the physical streamwise, normal
and spanwise coordinates, U,V ,W are the corresponding velocity components and
P is the pressure; the respective dimensionless quantities are denoted by lower-case
symbols:
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, (2.1)

where X0 is the streamwise location at which the initial weak Görtler vortex is
initiated. From laminar boundary-layer considerations, the ratio of the two scales
δ0/X0 is related to the Reynolds number as (ReX0

)−1/2, where ReX0
= U0X0/ν. The

scale of the Blasius laminar boundary-layer thickness is about 5δ0 at X0.

2.1. Basic equations and boundary conditions

The basic equations for the nonlinear spatial development of the longitudinal vorticity
elements originating from weak upstream Görtler vortices are thoroughly discussed
from the present point of view in Sabry & Liu (1991) and Lee & Liu (1992) and
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thus will not be treated here; refer to (4.3) to (4.6) but without the Reynolds stresses.
The Görtler mechanism in the y-momentum equation is retained in the wall region
and is set to zero in the mixing region. The boundary and upstream initial conditions
for the wall region are the same as in Sabry & Liu (1991) and Lee & Liu (1992):
the upstream conditions are appropriate to initially weak Görtler vortices and were
made to satisfy the local linear theory (Floryan & Saric 1982), where the shape of the
initial disturbance is consistent with the local Görtler number and wavenumber; the
maximum amplitude was established from experimental measurements (e.g. Swearin-
gen & Blackwelder 1987). The strongly nonlinear, spatially developing longitudinal
vortices described in Lee & Liu (1992) are then used as upstream initial conditions
for the mixing region.

The boundary and upstream initial conditions for the mixing region are

u→ 1, ∂v/∂y → 0, w → 0 as y →∞ (2.2)

in the upper region, representing the ‘core region’ in nozzle flow, and

u→ U1/U0, ∂v/∂y → 0, w → 0 as y → −∞ (2.3)

in the lower region, representing the ‘secondary air’ region in nozzle flow. The
spanwise-periodic boundary condition u(x, y, 0) = u(x, y, λ) is the same as that for the
wall region, where λ is the dimensionless wavelength normalized by δ0. The upstream
initial condition is given by

u = u(x = xg, y, z), (2.4)

where u(x = xg, y, z) is the longitudinal vortex solution for wall-bounded flow de-
scribed by Lee & Liu (1992) and xg is the dimensionless length that the wall-bounded
longitudinal vortex must develop on the wall prior to its release into the free mixing
region.

2.2. Computational procedure

Here the artificial compressibility approach of Chorin (1967) is used, which has been
proven, in numerous previous CFD calculations, to have a good convergence rate
and high accuracy. The principle of the artificial compressibility method is to add a
time derivative of an artificial density, ρ, to the continuity equation. Accordingly, the
artificial equation of state is established in order to relate the pressure to the artificial
density as: P = ρ/∆, where ∆ is the artificial compressibility. In this way, time is only
an auxiliary variable and the final steady solution does not depend on ∆.

The conservative form of the governing equations has been discretized using an
explicit finite-difference scheme. Both the x-inertia and time terms are discretized using
backward difference formula. A second-order central difference formula was used for
the y-inertia, z-inertia, pressure, and viscous terms. To obtain a high convergence rate,
the Gauss–Seidel method was utilized in the iteration process, and to ensure solution
stability, the time step was limited by the minimum grid spacing and artificial sound
speed values. A series of numerical experiments was carried out on the grid size to
ensure a grid-independent solution, and we decided on a 102× 51 non-uniform grid
(to increase the solution accuracy) in the (y, z)-plane for wall-bounded flow and a
204× 51 grid for the mixing region. In physical coordinates, the computational grid
corresponds to 50δ0 in the Y -direction for wall-bounded flow and 100δ0 in the mixing
region. Most of the computation was done on the Ultra Enterprise 5000 machine
(1.5 GB memory and 250 MHz UltraSPARC II processor).

In the computational scheme, total flow quantities are used as dependent variables,
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as in Sabry & Liu (1991) and Lee & Liu (1992). The mean flow is obtained via
spanwise averaging, which is the Reynolds average in the steady flow problem. In the
dimensionless variables already defined, the mean of any flow quantity q is

q̄(x, y) = λ−1

∫ λ

0

q(x, y, z) dz.

The disturbance velocity is then obtained by subtraction as q′(x, y, z) = q(x, y, z)
− q̄(x, y).

The initial condition for the wall-bounded flow is the Blasius solution for the
laminar mean flow and the linearized perturbation solution for Görtler vortices.
Following standard procedures (e.g. Floryan & Saric 1982), the multiple shooting
method was used to solve the boundary value problem of the local linear theory. This
system forms an eigenvalue problem for the parameters β = 2π/λ, σ and G, where σ
is the local spatial amplification rate.

2.3. The scalar transport problem

It is possible to infer from the momentum problem the behaviour of scalar quantities
such as temperature and concentration through a direct extension to the mixing
region of the similarity discussed by Liu & Sabry (1991). For an incompressible flow
in the boundary layer, they showed that the uncoupled heat-transfer problem and the
binary-diffusion mass-transfer problem are both similar to the streamwise momentum
problem in the development of nonlinear longitudinal vortices from weak upstream
Görtler vortices. This similarity requires that the Prandtl and Schmidt numbers be
unity; the dimensionless initial and boundary conditions must also be similar and
the boundary layer must be thin relative to the concave-wall radius. The non-unity
Pr and Sc problems, which require numerical computation, are discussed by Liu &
Lee (1995).

Because of the streamwise pressure gradient in the secondary instability problem,
the analogy with steady flow does not carry through exactly. The similarity may
still be applicable in the special case of ‘long’ streamwise wavelengths compared to
the boundary and shear layer thickness. The scalar structures observed even in the
unsteady situation (Peerhossaini & Wesfried 1988; Swearingen & Blackwelder 1987)
are now understood to be related in some way to the streamwise velocity features,
even if the analogy is not strict.

3. Steady flow problem: results and discussion
We first discuss the resulting flow structure for various trailing-edge lengths and

mixing enhancement assessments, particle paths, the effect of spanwise wavelength
and mixing-region velocity ratio, and energy considerations.

For numerical consistency as well as convenience, the wall-bounded problem is
recomputed numerically. The growth of the initially weak Görtler vortices corresponds
to parameters for the strongly amplified mode found in the experiments of Swearingen
& Blackwelder (1987) and the computational initial conditions of Sabry (1988), Sabry
& Liu (1988, 1991), Liu & Domaradzki (1990, 1993) and Liu (1991) for the temporal
problem (see also Park (1990) and Park & Huerre (1995) for temporal Görtler
vortices in the asymptotic non-growing boundary-layer problem) and Lee & Liu
(1992), Benmalek (1993) and Benmalek & Saric (1993) for the spatial problem.

The experimental conditions used are: U0 = 5 m s−1, R = 3.2 m and the spanwise
wavelength λ = 1.8 cm in room temperature air (Re/cm = 3425), with the computa-
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Figure 2 (a). For caption see facing page.

tional starting position for initiating the weak Görtler vortex at δ0 = (νX0/U0)
1/2 =

0.13 cm or X0 = 60 cm from the leading edge, for which u′max = 0.12U0. These values
lead to the dimensionless parameters used in the analysis: the Taylor–Görtler num-
ber G = (U0δ0/ν)(δ0/R)1/2 = 9.22, wavenumber β = 0.46, spatial amplification rate
σ = 3.59 and the wavelength parameter, which is invariant to the definition of the
Taylor–Görtler number used, Λλ = Reλ(λ/R)1/2 = 462 (the λ used in this equation is
dimensional). Experimental correlations are generally made in terms of the momentum
thickness; the corresponding values in this context are Gθ0

= (U0θ0/ν)(θ0/R)1/2 = 4.99
and βθ0

= 0.31. Concerning the starting conditions on the wall at a given X0 (or δ0),
note that Lee & Liu (1992) showed quantitatively that the downstream nonlinear
development of longitudinal vortices is insensitive to X0 provided that the local linear
instability theory for Görtler vortices is followed with X0, for a fixed Λλ, in describing
the initial conditions. The ‘spirit’ of these initial conditions has been demonstrated in
other works as well (Liu & Domaradzki 1993; Park & Huerre 1995; Sabry & Liu
1988, 1991; Benmalek & Saric 1993).

3.1. The flow structure

The distance along the wall in which the longitudinal vortices are allowed to develop
becomes an important parameter in the subsequent search for optimal enhanced
mixing in the downstream region behind the trailing-edge cutoff. Although Lee &
Liu (1992) showed that the nonlinear development of Görtler vortices is independent
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Figure 2. Downstream development of iso-u contours and the v, w-vector field in cross-sectional
planes for different trailing-edge lengths: (a) Xg = 70 cm, (b) Xg = 110 cm. (i) X = 0 cm (IC), (ii)
10 cm, (iii) 20 cm, (iv) 30 cm, (v) 40 cm, (vi) 50 cm, (vii) 60 cm, (viii) 70 cm.

of X0, in order to be consistent with the scale analysis used, the distance along the
wall from the leading edge to its cutoff at the trailing edge is denoted by the new
dimensionless parameter xg = Xg/X0.

In the mixing region, the origin of the dimensionless streamwise coordinate begins
at the trailing edge at xg (i.e. xmixing region = xwall region − xg), where the wall-bounded
nonlinear flow position at the trailing edge is now denoted by x = 0. In presenting
the results we use the dimensional X, to be consistent with the prevailing practice in
the experimental literature (e.g. Swearingen & Blackwelder 1987).

In the initial study, the ambient velocity depicted in the lower stream (the ‘secondary
flow’ in mixing terminology) is taken to be zero. Figures 2(a) and 2(b), for trailing-
edge lengths Xg = 70 cm and 110 cm, respectively, show detailed pictures of the total
iso-u velocity contours in the (y, z) cross-sectional planes superimposed on the cross-
sectional velocity (v, w) vector field. The initial condition at X = 0 shows different
nonlinear stages of the wall-bounded longitudinal vortices as they develop up to
their respective Xg . The wall is located at y = 0; the extent of the spanwise region is
measured by z, for which the half-wavelength location is λ/2δ0 = 6.82. Unconstrained
by the wall in the mixing region, v velocities in the upwash region, at the centre of the
(y, z)-plane now advect low-momentum fluid upwards into the high-velocity regions,
whereas in the downwash regions on the left and right sides of the (y, z)-plane the
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Figure 3. Nonlinear development of longitudinal vortices in the mixing region, Xg = 90 cm.

downward v velocities advect high-momentum fluid into the low-velocity region, as
shown in figure 3 (where cross-sectional psuedo-streamlines connect cross-sectional
velocity vectors to illustrate the counter-rotating vorticity elements).

As expected, the distance Xg over which the longitudinal vortices develop on the
wall before being released into the free mixing region is an important parameter
for mixing enhancement. For Xg = 70 cm, the downwash region lowers the high-
speed-fluid iso-u contours into the low-speed region, but the associated upwash and
downwash vectors are small relative to the Xg = 110 cm case. On the other hand,
while the upwash and downwash vectors are relatively larger for the Xg = 110 cm
case, the high-speed regions of the iso-u contours do not appear to lower into the
low-speed fluid. Additional calculations for 80 cm, 90 cm and 100 cm reflect this same
qualitative behaviour and mushroom shapes were also obtained.

Visually, the Xg = 90 cm case (see figure 3) appears to promote better mixing.
The interpretation of iso-u contours in terms of iso-concentration and iso-thermal
contours for Sc = Pr = 1 is immediate from the discussion of scalar transport in § 2.3.

3.2. Spanwise-averaged flow field

The Reynolds-averaged mean velocity in the present problem is the spanwise-averaged
profile ū(x, y). These inflectional profiles develop in the wall region, owing to the
upwards advection of low-momentum fluid, and persist well into the free-mixing
region; this is more apparent for larger values of Xg where the momentum advection
by the longitudinal vortices can develop further along the wall prior to release into the
mixing region. The spanwise-averaged velocity profiles are not of particular interest
as they are the result of the two-dimensionalization of a real three-dimensional
problem. The secondary instabilities are associated with the three-dimensional steady
inflectional profiles and will be addressed more fully in §§ 4 and 5 in connection with
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the three-dimensional profiles u(y, z; x) rather than the spanwise averaged profiles
ū(x, y). What is of interest here is the centreline value of ū(x, y), which is denoted
by ūcl(x). In laminar mixing, the centreline velocity approaches the asymptotic value
ūcl(∞) → 0.587 for a velocity ratio of U1/U0 = 0 (ūcl(∞) → 0.765 for U1/U0 = 0.5),
according to the similarity solution far downstream without longitudinal vortices. The
streamwise rapidity with which ūcl(x) equilibrates towards the far-downstream value
indicates enhanced mixing. However, because of the distorted mean velocity profiles
in the presence of longitudinal vortices, it is questionable to rely on ūcl(x) alone to
indicate the extent of mixing enhancement. The development of ūcl(x) is shown in
figure 4 with Xg as the parameter; included for comparison is the reference case in
the absence of longitudinal vortices. Both the Xg = 80 cm and 90 cm cases are slightly
more vigorous in accelerating the equilibration of ūcl(x) than the other cases shown
for small distances from the trailing edge; eventually the 90 cm case is the most
vigorous and Xg = 70 cm is the least vigorous. Beyond what is shown in figure 4,
no attempt has been made here to study the asymptotic approaches far downstream.
Mixing enhancement in applications is expected to be achieved well upstream in the
developing non-equilibrium region. Any equilibration towards the similarity solution
is not of significant interest for the desired mixing enhancement over short distances.

3.3. Mass flow and entrainment

An estimate of the local (in x) net mass entrained into the mixing layer is obtained by
integrating the continuity equation over the region (x−xg , ∆h, λ), where ∆h = hu−hl;
the limits of integration are well beyond the edges of the shear layer hu � δu, hl � δl
(see figure 3) and are thus independent of x. The integration across the spanwise
region over one wavelength sums over all the explicit effects due to longitudinal
vortices. Because the spanwise velocity is periodic, there is no net spanwise mass flow
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Figure 5. Mixing efficiency development.

across the wavelength. In this case, the net dimensionless mass entrained is

λρ

∫ hu

−hl
ū(x, y) dy − λρ

∫ hu

−hl
ū(xg, y) dy = λρ

∫ x

xg

[v̄(hl, x)− v̄(hu, x)] dx ≡ ṁ, (3.1)

where ρ (constant) is the dimensionless fluid density (which is unity) and is brought
in to give the dimensionless equation a more physical appearance. Equation (3.1) has
the simple control-volume interpretation that the net mass entrained (denoted by ṁ),
across the planar regions x − xg , λ at hu � δu and hl � δl is equivalent to the net
mass flow due to the streamwise velocity over the cross-sections ∆h, λ at x and xg .
On the basis of entrainment, the mixing efficiency parameter (described, for instance,
by Carletti & Rogers (1995) for a cylindrical ejector) is here defined as

η = (ṁ/ṁref)− 1, (3.2)

where ṁref is the corresponding net mass entrained in the reference case in the absence
of longitudinal vorticity elements on the wall and in the mixing region. The numerical
expression for η is then simply

η =

[∫ hu

−hl
ū(x, y) dy −

∫ hu

−hl
ū(xg, y) dy

]/[∫ hu

−hl
ū(x, y) dy −

∫ hu

−hl
ū(xg, y) dy

]
ref

− 1.

(3.3)
The mixing efficiency η is shown in figure 5, with Xg as a parameter. The Xg = 70 cm
case falls slightly below zero, indicating a slight reversal in entrainment. For other
values of Xg indicated, η is positive, with the Xg = 90 cm case being optimal among
the numerical examples calculated (as anticipated in § 3.1) and η ≈ 80% at the end of
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a mixing region length of X = 70 cm or 39 equivalent spanwise wavelengths behind
the trailing edge.

3.4. Mixedness

In order to assess mixing efficiency from different points of view, we introduce
the mixedness parameter, based on the variance of an advected scalar quantity. The
dimensionless temperature θ is related to the total streamwise velocity u in the context
discussed in § 2.3 for Pr = Sc = 1 (Liu & Sabry 1991). If we use standard notation
and denote the advected scalar quantity by ϕ, then in the present case, ϕ = θ = u;
the variance σv is defined as

σv =

∫
|u− û| dA/û

∫
dA, (3.4)

where û is the average of u over the integration dA = dy dz carried over the finite
cross-sectional region hu−hl and λ, which is discussed in § 3.3 and depicted in figure 3.
The mixedness parameter M is then defined as

M = (σv0
− σv)/σv, (3.5)

where σv0
is the variance at the trailing edge. Such a parameter was used, for

instance, by Tsui & Wu (1996) in their study of multi-lobe mixers. Figure 6 shows the
development of M as a function of the downstream distance; the case denoted Ref
is the situation in the absence of longitudinal vortices, where mixedness develops by
viscosity alone. It appears that the Xg = 80 cm case gives the optimum mixedness.

It seems clear here that, as for the entrainment considerations, the larger Xg case,
allowed longitudinal vorticity elements to develop further along the wall, and thus
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the vorticity elements rose higher above the original interface, thereby lessening their
influence on the lower region. At the same downstream region of X = 70 cm in
figure 6, the mixedness parameter for the optimum Xg = 80 cm is about twice (104%)
that of the Ref case.

3.5. Interface stretching and combustion problems

A lobed-trailing-edge splitter plate has been used in studies of combustion in a
mixing-region geometry (McVey 1998; Waitz & Underwood 1996). McVey (1998)
showed that, because of enhanced mixing and increased flame speed, the flame spread
angle doubled over that for a flat-plate trailing edge. Waitz & Underwood (1996)
found that mixing enhancement in the lobed-trailing-edge case was less sensitive to
the stabilizing effect of heat release than in the two-dimensional case in the absence
of longitudinal vortices.

Lobed fuel injectors have been studied recently for controlling the sequence of
mixing and combustion (Mitchell et al. 1996; Smith et al. 1997). Fuel is injected directly
into the longitudinal vortex flow field, where the flow has the largest streamwise
vorticity and highest strain rates. Because of the latter, ignition is delayed; because
of the high vorticity, fuel and oxidizer are mixed rapidly. Thus it is possible to
bring about a mixed or partially mixed fuel–oxidizer system before ignition, thereby
reducing pollutants by avoiding ignition under diffusion flame conditions. Mitchell et
al. (1997) contrasted the characteristics of lobed and non-lobed injectors and found
that the visible flame shows a considerable degree of entrained air and premixing so
that at least partially mixed, lean flames can be achieved.

The contortion and stretching in the initial interface between two streams as the
flow develops downstream is an effective measure of mixing enhancement (see Waitz
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et al. 1997). Particularly important in diffusion-dominated combustion problems, such
as non-premixed flames, is the use of large-scale longitudinal vorticity elements to
control the extent of combustion via the control of interface surface area available for
scalar diffusion towards the interface and hence the extent of reaction at the interface.

In the present problem, the initial interface length separating the two fluids is one
spanwise wavelength. The downstream development of the interface stretching by the
cross-stream advective velocities of the longitudinal votricity is shown in figure 7. The
longer-trailing-edge case, Xg = 100 cm, produces greater interface stretching further
downstream, whereas the Xg = 90 cm case produces greater interface stretching closer
to the trailing edge.

3.6. Particle paths

Tracking particle paths in a given flow field is useful in depicting the mixing mechanism
and flow structure (e.g. Yarin et al. 1996). To illustrate this, the flow field of the
‘optimal mixedness’ case (figure 6), Xg = 80 cm, is used to construct the particle paths
in figure 8. Particles are released along a vertical line located at the centre of the
clockwise ‘vortex’ when viewed upstream (to the right of the iso-streamwise velocity
mushroom structure), and show the interweaving and twisting of the stream ribbons.
Figure 8 also shows the large-scale ‘stirring’ on the clockwise-rotating side of the
vortex as low-momentum fluid is advected upwards into the high-velocity regions.
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3.7. Disturbance energy

The longitudinal vortices released into the mixing region originate from spatially
amplified disturbances in the upstream wall region. It is therefore of interest to depict
the evolution of disturbance energy in the mixing region. Taking into account the
scaling discussed in § 2, the dimensionless total (or global) disturbance energy, referred
to free-stream values, is

E =
1

2

∫ ∞
−∞

1

λ

∫ λ

0

(u′2 + v′2/ReX0
+ w′2/ReX0

) dz dy, (3.6)

for the mixing region. In the wall region, the lower limit in the y integration is
zero. The disturbance energy for the wall-bounded flow, shown as the bold-solid line
in figure 9, is similar to that obtained earlier in computations (Sabry & Liu 1991;
Lee & Liu 1992) and in measurements (Swearingen & Blackwelder 1987) for the
steady disturbance component, showing that E amplifies initially and subsequently
decays. The solid lines are the mixing-region disturbance energy corresponding to the
trailing-edge lengths for the Xg indicated. For the longer lengths Xg = 100 cm and
110 cm, where the wall-bounded flow E decays, the disturbance energy in the mixing
region also decays.

The Xg = 90 cm case corresponds approximately to the maximum disturbance
energy for the wall-bounded flow at this trailing-edge cutoff position. For this case,
the disturbance energy in the mixing region subsequently amplifies.

For the early stages of cutoff for the longitudinal vortices, the Xg = 70 and 80 cm
cases, the disturbance energy is considerably amplified in the mixing region. However,
as assessed earlier, these two cases were not those for which the mixing efficiency
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(figure 5) or the interface stretching (figure 7) is optimal. However, the Xg = 80 cm
case provides an optimal mixedness parameter for the flow field (figure 6).

In the present spatial problem, it is the global mean advection of disturbance energy
that is subject to ‘amplification’ rather than the global disturbance energy alone, as in
the temporal problem. The advected global disturbance energy balance in the mixing
region is obtained using the simplified parabolic partial differential equations (e.g. Lee
& Liu 1992) to form the mean spanwise-averaged kinetic energy equation, subjected to
integration across the shear flow. The resulting integrals describing energy advection,
exchanges and conversions are evaluated by inserting the computed results into the
integrand. This technique is very similar to that discussed in detail for the steady
wall-bounded flows (Lee & Liu 1992) and the details are thus described only briefly.

In the mixing region, the flow is taken as tangential to the trailing edge, so that
the centrifugal mechanism does not appear in the energy balance. It is necessary,
however, to point out an anomaly for wall-bounded flow that arises from the com-
monly accepted scale analysis performed on the momentum equations when only the
Görtler centrifugal instability mechanism Gu2 is retained in the y-momentum equa-
tion. This analysis neglects the mechanism −Guv in the x-momentum equation, which
was retained by Hämmerlin (1955). As noted by Sabry & Liu (1991), the Görtler
mechanism alone produces an apparent energy source Gvu2 for the kinetic energy
contribution v2/2, but this must not be taken literally as a net source of energy in
the global energy balance. This is because the Hämmerlin mechanism, though ‘small’
in the momentum sense in the scale analysis, produces an equal and opposite energy
exchange mechanism in the u2/2 kinetic energy contribution. In the global kinetic
energy balance, therefore, the exchanges between u2/2 and v2/2 due to centrifugal
instabilities are cancelled. This cancellation holds independently of our assumption
of tangential flow off the trailing edge.

The global disturbance (kinetic) energy balance in the mixing region is thus stated
as

d

dx
(mean advection of energy) = Production−Dissipation− d

dx
(‘eddy’ diffusion).

(3.7)

The streamwise rate of change of mean flow advection of disturbance energy is
brought about by the balance among disturbance energy production from the span-
wise averaged mean flow, the rate of viscous dissipation and the streamwise ‘eddy’
diffusion through the triple correlations. The global disturbance energy consists mainly
of contributions from the streamwise disturbance kinetic energy. Thus the global mean
advection of disturbance energy is provided predominantly by the streamwise velocity
component, as would be expected from the scaling in § 2. (However, in the differential
equation computation, all three-dimensional velocity components must be computed
according to § 2.) The disturbance energy comes mainly from the streamwise compo-
nent of the kinetic energy u2/2.

We studied a few cases for illustration purposes and found that, for Xg = 90 cm
and 80 cm at least, the production from the Reynolds shear stress working against
the mean shear rate of strain is positive,∫ ∞

−∞
−u′v′ ∂ū

∂y
dy > 0,

reflecting a positive energy flow to the disturbance from the mean flow. The Reynolds
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normal stress conversion mechanism is negative,∫ ∞
−∞
−u′2 ∂ū

∂x
dy < 0,

reflecting an energy flow from the disturbance back to the mean flow. However,
as shown by the scale analysis, the Reynolds shear stress conversion mechanism
dominates. The production mechanism, though decreasing from the trailing edge, has
a relatively large value at the trailing edge that initially offsets dissipation, so that the
rate of advected energy increases. The dominant contribution to the rate of viscous
dissipation comes from the dissipation of the streamwise component of the kinetic
energy. Because the scaled problem is parabolic, the dissipation is predominantly that
in the (y, z)-plane, ∫ ∞

−∞

[(
∂u′

∂

)2

+

(
∂u′

∂x

)2
]

dy.

‘Eddy’ diffusion through the triple correlations plays a minor role in the energy
balance.

3.8. Spanwise spectral content

The longitudinal vorticity elements sent into the mixing region are initiated upstream
in the wall region at a given wavelength. It is known that in wall-bounded flows
(e.g. Swearingen & Blackwelder 1987; Tani 1962) the initiated Görtler vortices persist
downstream with the same initial physical wavelength for a given set of experimental
conditions so that the wavelength parameter Λλ remains constant. In order to assess
the spectral content of both the wall-bounded and mixing-region flows from the
present theoretical and computational results more simply, the disturbance streamwise
velocity component is first integrated across the shear flow so that the y-dependence
is removed. This ‘signal’ is then subjected to a Fourier transform:

f(n; x) = (2π)−1/2

∫ 2π

0

exp(−inz)

∫ ∞
−∞
u′(x, y, z) dy dz. (3.8)

The magnitude of this transform was computed as a function of the mode number
n for the mixing region in the case of Xg = 90 cm (not shown here). The dominant
peak still follows mode number unity with some broadening in the spectrum. This
is similar to wall-bounded flows, as pointed out by Saric (1994) in his discussion of
Benmalek’s computations (Benmalek 1993; Benmalek & Saric 1994).

3.9. Some effects of initial conditions

It was crucially recognized in early studies that the development of strongly nonlinear
vortices in relatively thin boundary layers is a parabolic problem, with the streamwise
distance playing the role of ‘time’ (Floryan & Saric 1982; Hall 1983). The problem is
indeed an upstream-initial-value problem and is thus susceptible to control even in a
passive sense. Sabry & Liu (1991), Liu & Sabry (1991), Lee & Liu (1992) and Liu &
Lee (1995) studied quantitatively the effect of initial conditions on the downstream
development of such vortices and their transport effects. It was first clarified (Lee
& Liu 1992) that the computational problem must start with the local parameters
of the problem and that the starting flow structure must satisfy the hydrodynamical
conservation equations (not just the equation of continuity), at least at the level of
the local linear Görtler instability (see also Liu & Domaradzki 1993; Benmalek &
Saric 1994; Park & Huerre 1995). In this case, the downstream development is not
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dependent upon the upstream location (or the initial times in the temporal problem)
of the disturbance initiation. In the following the effects of varying the spanwise
wavelength and velocity ratio are discussed.

3.9.1. Spanwise wavelength

The main computational results for mixing enhancement here use the steady
Görtler vortex flow upstream in a parameter range that is known experimentally (e.g.
Swearingen & Blackwelder 1987) for its vigorous development in the most amplified
region. This is referred to as the standard case. In terms of upstream parameters,
it is known that for wall-bounded flow an increase in the spanwise wavelength,
while keeping the initial Görtler number fixed, decreases the transport activity of the
nonlinear longitudinal vorticity elements (Sabry & Liu 1991; Liu & Sabry 1991). To
illustrate the downstream effect on mixing, the wavenumber is halved from β = 0.46
to β = 0.23, corresponding to increasing the wavelength parameter Λλ from 462 to
1308 (in dimensional form, λz is increased from 1.8 cm to 3.6 cm). For the same Görtler
number G = 9.22, the initial linear amplification rate is then decreased from σ = 3.59
to 2.43. Thus for the same initial disturbance amplitude u′max = 0.12U0, longitudinal
vortices are expected to develop less vigorously than in the initially more amplified
case. Consequently, almost all calculated mixedness values for Xg = 70 cm, 80 cm and
100 cm are decreased for the same streamwise lengths of the mixing region as for the
standard case (shown figure 6); the mixedness level for the Xg = 90 cm case remains
unchanged, and the Xg = 110 cm case has a slight increase. It should be pointed
out that in the mixedness calculations the integration in the spanwise direction is
consistently performed over the subject wavelength.

We have already seen in figure 5 that the mixing efficiency at Xg = 70 cm for the
standard case falls below zero, reducing entrainment below the reference value for
this case. In the increased wavelength case, the calculated result shows that both
Xg = 70 cm and 80 cm cases significantly offset the entrainment properties of the
basic reference case, to the extent of halting entrainment at the end of the computed
mixing region. The entrainment efficiency is significantly decreased for Xg = 90 cm,
while for Xg = 100 cm and 110 cm it is increased.

This latter increase can perhaps be explained from the flow structure at the end
of the computed mixing region (X = 70 cm), not shown here, in which a secondary
downward pointing (negative y-direction) mushroom structure develops that induces
further entrainment from the negative-y side, as the connected vectors in the (y, z)-
plane indicate. The standard case also shows entrainment from the negative-y side
but to a less developed extent, which accounts for the smaller η in figure 5 at the
same X = 70 cm location.

3.9.2. Effect of velocity ratio

The computations for the ‘standard case’ were performed for zero secondary-
stream velocity U1 = 0. To illustrate the effect of a non-zero velocity, computations
are performed for U1/U0 = 0.5 and Xg = 80 cm. In contrast to the U1/U0 = 0 case
of figure 2, the secondary stream in the present case initially supports a trailing-edge
boundary layer without longitudinal vortices at x = 0 and y < 0.

Although the mushroom shape of the iso-u structure develops less fully and occupies
less area in the (y, z)-plane for the U1/U0 = 0.5 case, there appears to be more
uniformity within the affected regions than the U1/U0 = 0 case, which accounts
for the large mixedness values shown in figure 6: 0.22 compared to 0.17 at the
same downstream location, X = 70 cm. This is mainly attributable to the smaller
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amplification of the longitudinal vorticity elements in the mixing region in the weaker
mean shear (U1/U0 = 0.5) case. These remarks also hold for the scalar problem
because of the similarity between iso-u and iso-θ discussed in § 2.3. On the other
hand, the mixing efficiency for the U1/U0 = 0.5 case is approximately half of that
for U1/U0 = 0 at the same downstream location, X = 70 cm (see figure 5). The
corresponding energy for this case is shown in figure 9, which is weaker that the
U1/U0 = 0 case, again because of the lower amplification rate.

3.10. Streamwise vorticity centres at the trailing edge

The dimensionless streamwise vorticity magnitude ωx at its ‘vortex centre’, that is,
at the centre of the pseudo-two-dimensional streamline pattern in the (y, z)-plane, is
depicted in figure 10 at each trailing-edge length Xg for the single-stream mixing-layer
case. As discussed in connection with mixing parameters, the optimal Xg is associated
not necessarily with the largest ωx, but instead with modest ωx and close proximity of
the vortex centre to the ‘low-velocity’ region. The characterization of mixing using the
centre values of ωx(Xg), or the equivalent circulation of one of the counter-rotating
vortices, would not be as useful in the present context as in the case of lobed trailing
edges (e.g. Waitz et al. 1997). In the lobed-trailing-edge case, as well as when using
explicit vortex generators, the streamwise vorticies generated are very nearly mimicked
by potential vortices with a viscous or turbulent core (Waitz et al. 1997). In this case
the strength of the vortices decays downstream through dissipative mechanisms. In
the present studies, the vortices sent downstream possess their own Reynolds stresses
for amplification (even after the initial centrifugal force has been switched off in the
mixing region) and only later succumb to dissipative mechanisms. This again points
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to the difference between vortices, which decay after generation, and ‘vortices’ which
are sustained by instability mechanisms as in the present studies.

4. Excitation of secondary instability in the optimal steady longitudinal
vorticity elements: discussion and formulation of the problem

Sections 2 and 3 studied mixing enhancement via the release of strongly amplified,
steady longitudinal vortices into a mixing region. The steady longitudinal vortices, by
the nonlinear development of intense local rates of strain, become susceptible to time-
dependent secondary instabilities. Their influence in furthering mixing enhancement is
studied in this and the following section. We first present a brief review of secondary
instabilities of longitudinal vortices in wall-bounded flows as a basis for studying
secondary instabilities in the free-mixing region.

It is known from experimental studies that in wall-bounded flows, longitudinal
vortices are susceptible to wavy disturbances, commonly known as secondary insta-
bilities (Aihara 1962; Bippes 1972; Bippes & Görtler 1972; Aihara & Kohama 1981,
1982; Aihara, Tomita & Ito 1985; Ito 1980, 1985, 1988; Swearingen & Blackwelder
1987; see also the reviews by Floryan 1991 and Saric 1994). The strong nonlinear
modifications of the flow field by the upwash and downwash activities of the steady
longitudinal vortices result in strong local spatial gradients of the dominant total
streamwise velocity component that provide sites for shear or secondary instabilities.
Swearingen & Blackwelder’s (1987) measurements of the secondary instability fluctu-
ations provided a quantitative base for comparisons with theoretical results (e.g. Yu
& Liu 1991, 1994; Hall & Horseman 1991, Liu & Domaradzki 1993).

Early work on secondary instabilities of Görtler vortices has been done by Hall
& Seddougui (1989) and Bassom & Seddougui (1990) for the large-wavenumber
and large-Görtler number limits. The results are not, however, directly applicable
to experimental observations where the secondary instability wavelengths are of the
order of the local boundary layer thickness and the basic flow is at finite Görtler
numbers.

Sabry & Liu (1988, 1991) computed the basic longitudinal vorticity elements de-
veloping from initial weak Görtler vortices within the same nonlinear framework
of unsteady time-dependent growth of the boundary layer as envisioned by Görtler
(1940). Sabry & Liu (1991) mapped out regions of intense ∂u/∂y and ∂u/∂z and
discussed the sites for secondary instabilities. This was followed by Sabry, Yu &
Liu (1990) stability analysis, taking sectional profiles from the full three-dimensional
total streamwise velocity profile of Sabry & Liu (1991) as if they were quasi-two-
dimensional. Sabry et al.’s (1990) results for sections that are most susceptible to
secondary instabilities were qualitatively in agreement with the global viscous sec-
ondary instability analysis of Yu & Liu (1991). In good agreement with measurements
(Swearingen & Blackwelder 1987), Yu & Liu (1991) found that the sinuous mode has
the most intense incipient breakdown region in terms of the experimentally compa-
rable contours of the x-component of the secondary instability u′rms close to the wall
on both sides of the upwash region, and less intense regions near the shoulders of
the mushroom-shaped iso-u contours away from the wall. Other discussions of the
wall-bounded-flow secondary instability problem may be found in Hall & Horseman
(1991) and Li & Malik (1995), as well as Liu & Domaradzki (1993) and Park &
Huerre (1995).

Yu & Liu (1994) showed that the structural features of the two possible modes,
varicose and sinuous (drawing upon the similarity with Rayleigh’s jet instability when
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viewed in the (x, z)-plane of the three-dimensional flow field), follow the dominant
production mechanisms of these modes, which in turn trace the dominant velocity
gradients of the flow. In this case, the structural features of the varicose and sinuous
modes in terms of u′rms indeed follow closely the three-dimensional features of ∂u/∂y
and ∂u/∂z, respectively. Thus in order for the relative intensities of the secondary
instability to be correctly located according to observations, the ‘mean flow’ velocity
distribution and its gradients in the analysis must first be computed correctly. Hall
& Horseman’s (1991) inviscid analysis did not recover the correct structural features
for the location of the relative intensities (although the eigenvalues are comparable
to those in Yu & Liu (1991) within about 10%, primarily because their computed
steady streamwise velocity differed from the experimental profiles (Swearingen &
Blackwelder 1987) and from the computed nonlinear steady basic flow used by Yu &
Liu (1991)).

Liu & Domaradzki (1993), using the unsimplified full Navier–Stokes equations,
carried out direct numerical simulations of Görtler vortices and the nonlinear devel-
opment of secondary instabilities within the unsteady boundary layer framework. The
nature of the ‘turbulence’, to which the flow eventually evolves was not analysed. It was
difficult, in any case, to relate experimentally observed r.m.s. of the time-dependent
flow, including secondary instabilities and eventually turbulence (e.g. Swearingen &
Blackwelder 1987), to the computed time evolution of spatially period flow. The
frequency approximating that of the observed secondary instability, while recovered
in linear stability analysis (Yu & Liu 1991), could not be found in the temporal
numerical simulations (Liu & Domaradzki 1993). This may be attributed to the
pre-selected streamwise wavelength via specification of the streamwise dimension of
the computational box size. This simulation confirmed many of the features obtained
from the much simpler framework for boundary layer thickness much smaller than
the wall radius (Sabry & Liu 1991), as well as results from the linear theory (Yu &
Liu 1991, 1994) prior to the development of strong nonlinearities in the secondary
instabilities.

Also of interest is the related work of Park & Huerre (1995) on the nonlinear
unsteady development of longitudinal vortices in the asymptotic suction boundary
layer on a curved surface, which recovered many features of the unsteady boundary
layer results (Sabry & Liu 1991; Liu & Domaradzki 1993). Park & Huerre (1995) also
performed a linear stability analysis for the secondary instabilities, again obtaining
features similar to the secondary instability results for the boundary layer (Yu & Liu
1991, 1994; Liu & Domaradzki 1993). Their urms structural features differ from those
of Hall & Horseman (1991) for reasons already discussed.

Li & Malik (1995) expanded the inviscid linear stability calculations for basic
nonlinear longitudinal vortices at spanwise wavelengths that are half and twice that
in the detailed experiments of Swearingen & Blackwelder (1987); this work is similar
to the variation in computations of basic flow in Sabry & Liu (1991) for other wave-
lengths and initial conditions. Li & Malik (1995) also obtained the linear solutions for
several local downstream locations where the secondary instabilities were observed
to have already become nonlinear (Swearingen & Blackwelder 1987). They converted
the temporal amplification to a spatial one via the group velocity, a procedure valid
only for amplification rates near the neutral point (Gaster 1962). Although observed
secondary instabilities occur at relatively large maximum amplification rates, the plot
of growth rates (in cm−1) from the linear theory for the varicose (even) and sinuous
(odd) modes at different downstream locations (Li & Malik 1995, figure 4) is most
instructive. However, caution should be exercised in arguments based only on the
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linear theory that do not take into account upstream initial-condition or amplitude
effects. In general, Li & Malik’s (1995) linear results were consistent with previous
analyses (Yu & Liu 1991) for similar parameter ranges.

All linearized secondary stability analyses reported were for the temporal rather
than the spatial problem. Yu and Liu attempted the spatial analysis at first but were
not successful in obtaining convergence for the problem and thus reverted to the
temporal analysis that was reported in Yu & Liu (1991).

Li & Malik (1995) also solved the parabolized nonlinear stability problem, using the
‘PSE method’ (Herbert 1997) for the observed fundamental spanwise wavelength for
the varicose and the sinuous mode, and employing their respective temporal–inviscid
linear solutions as upstream initial conditions. The two modes were intermingled at
unknown initial relative strengths in the numerical simulations of Liu & Domoradzki
(1993), a situation likely to be the case in real flows. It is therefore difficult to attribute
dominant energy-conversion mechanisms to one mode or the other, although the
linear theory (Yu & Liu 1994) provides a valuable guide to such mechanisms. The
nonlinear evolution of secondary instabilities from both the temporal simulation (Liu
& Domaradzki 1993) and spatial parabolized computation showed modifications of
the familiar initial iso-urms contours of the secondary instability. The time traces (Li
& Malik 1995, figure 11) at a given physical location are more characteristic of the
superposition of trigonometric time functions rather than of observed turbulence.
Time traces from the temporal simulation (Liu & Domaradzki 1993, figures 10–12)
showed the apparent development of higher frequencies; leaving aside the question of
whether the development of observed turbulence is within the computational realm
(Li & Malik 1995; Liu & Domaradzki 1993) without explicitly accounting for the
development of turbulence itself (e.g. Liu 1988). There appears to exist a significant
streamwise region in which secondary instabilities exert a strong influence on the
mean flow field. It is the role of this influence in mixing enhancement that we study
in the following sections.

4.1. Formulation of the nonlinear secondary instability problem

The Navier–Stokes temporal simulation of Liu & Domaradzki (1993) encompasses
the nonlinear development of secondary instabilities in wall-bounded flow, as already
discussed. The nonlinear work of Li & Malik (1995) uses the parabolized stability
equations (PSE, e.g. Herbert 1997) in which the streamwise wavenumbers are also
unknown but are chosen so that integral norms are satisfied. The normalization
used, which is not necessarily unique, follows earlier work (Bertolotti, Herbert &
Spalart 1992) and partitions the streamwise development among the shape function,
the exponential growth and wave function. As such, it has the effect of making the
total kinetic energy of the shape functions of the secondary instability independent
of the streamwise development variable; the secondary instability kinetic energy
‘amplification’ is thus absorbed into the amplification rate in the phase function. The
normalization conditions furnish additional relations for the unknown wavenumbers
that are to be solved jointly and iteratively with the parabolized stability equations at
each streamwise station. The local convergence then allows the forward integration
in the streamwise direction to proceed. No such norms are needed for the spanwise
wavenumber, which is considered a known input.

Although the PSE method allows the streamwise wavenumber to vary downstream,
the development of these wavenumbers was not reported explicitly (Li & Malik
1995). These authors used the inviscid local linear stability results as upstream initial
or starting condition for the viscous form of the parabolic stability equations. The
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flow structure differs considerably in the linear viscous and inviscid calculations (Yu
& Liu 1994) and thus a viscous nonlinear computation using an inviscid upstream
structure (Li & Malik 1995) would require an adjustment length that remains to
be further elaborated. Their figure 7, showing the instantaneous streamwise velocity
plots at a given normal location for both varicose and sinuous modes, suggests that
the streamwise wavelength remains ‘constant’ as the flow evolves downstream.

Swearingen & Blackwelder (1987) reported that the secondary instabilities occurred
at about 130 Hz and that this frequency appears to persist until fine-grained turbu-
lence developed. From their figure 3, an instantaneous visualization of the flow field,
it appears that the secondary-instability streamwise wavelength of about 2.5 cm also
persisted downstream well into the modulated turbulent-flow region. In other visu-
alization pictures (their figure 14), although the streamwise wavelength differs from
the original 2.5 cm value, both varicose and sinuous modes have nearly constant
wavelengths as they develop downstream.

On the other hand, the eigenvalues provided by the local linear theory appear to
predict fairly well the initial characteristics of the observed secondary instabilities. For
instance, for the most amplified sinuous mode, the Yu & Liu (1991) viscous analysis
predicted a frequency of about 140 Hz for the streamwise wavelength of 2.5 cm (at
streamwise station X = 90 cm from the leading edge), while Li & Malik obtained
134 Hz for the same wavelength but at X = 81 cm (a linear interpolation of their
table 1 results). It is more meaningful to make comparisons in terms of the local
eigenvalues than at the same X, since the computed local nonlinear steady mean flow
differs considerably.

The local linear secondary instability theory is thus seen to provide realistic eigen-
values and the upstream initial flow structure (in the viscous sense), and all indications
point to the robustness of the initial streamwise wavelength as the flow develops down-
stream, similar to the experimentally observed robustness of the spanwise wavelength
in the steady vortex development. For the present physical problem, it is thus sensible
to circumvent the PSE method and the need to perform iterations around the local
eigenvalues and consider them as given by the upstream initial conditions.

In mixing enhancement studies, we consider the excitation of the single most
amplified mode of the primary steady longitudinal vortices, which would be the
varicose mode. The basic equations are stated and solved in the physical plane below.

4.2. Basic equations for the nonlinear secondary instability problem

Beginning with the three-dimensional unsteady Navier–Stokes equations for an in-
compressible flow in cylindrical coordinates and subsequently converting to wall
coordinates, the total flow quantities are split into steady flow and instantaneous
disturbance components as follows:

Qt(x, y, z, t) = Q(x, y, z) + Q′(x, y, z, t). (4.1)

The steady flow quantities Q include the basic flow and the longitudinal vorticity
elements arising nonlinearly from upstream weak Görtler vortices (§§ 2 and 3), whereas
the instantaneous disturbances Q′ represent the unsteady secondary instabilities only
in the absence of turbulence. The spatial variables X, Y and Z are the dimensional
streamwise, wall-normal and spanwise coordinates. Unlike the steady flow case, the
unsteady disturbances vary in all directions with length scales of the order of the
boundary-layer thickness characterized by δ0 = (νX0/U0)

1/2, where ν is the kinematic
viscosity, X0 is the distance from the leading edge where the initial conditions for the
steady part of Görtler vortices are imposed and U0 is the velocity of the free-stream
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flow. As in § 2, we introduce δ0 and X0 as convenient length scales but the problem
is independent of them (see Lee & Liu 1992). In the numerical application, the same
X0 = 60 cm and consequently δ0 = 0.132 cm are used. The non-dimensional total flow
quantities and coordinates, in lower case, are written as

x =
X

δ0

, y =
Y

δ0

, z =
Z

δ0

, t =
TU0

δ0

, u+ u′ =
U +U ′

U0

,

v + v′ =
V + V ′

U0

, w + w′ =
W +W ′

U0

, p+ p′ =
P + P ′

ρU2
0

, (4.2)

where u, v and w are the x-, y- and z-components of the velocity, t is the time and p
the pressure; ρ is here redefined as the physical, rather than dimensionless, (constant)
density. Upper-case letters denote the corresponding dimensional quantities. The
dimensionless quantities in (4.2) differ from the steady-flow scaling defined earlier:
the present scaling ‘favours’ the nearly isotropic scale of the secondary instability,
which is of the order of the boundary-layer thickness. Similar new dimensionless
quantities for the steady flow are also defined because of their participation in a
simultaneous calculation of the problem. It has been verified that there is no difficulty
in retaining the steady flow approximations already obtained.

4.3. The Reynolds-averaged modified steady flow problem

Substituting (4.2) into the unsteady Navier–Stokes equations and then averaging in
time yields the set of equations satisfied by the steady flow quantities in the Reynolds-
averaged form. Parabolization arguments from Floryan & Saric (1982) and Hall
(1983, 1988) for viscosity effects are applied to the Reynolds-averaged equations, as in
§ 2. No empirical assumptions are made about the Reynolds stresses due to secondary
instabilities in the steady flow problem, as they are to be obtained from simultaneously
calculated nonlinear secondary instability development. As in § 2, it is assumed that
the radius of curvature in the longitudinal direction, R, is much larger than the
boundary layer thickness, δ0/R = 1/rc � 1, so that terms of order δ0/R = 1/rc and
less are neglected (e.g. Floryan & Saric 1982; Hall 1983). The curvature terms for
the divergence of the Reynolds stresses, which originates from advective effects, are
also of order 1/rc. Consequently, the governing equations for the steady flow can be
written as follows:

continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (4.3)

x-momentum equation

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

1

Re

(
∂2u

∂y2
+
∂2u

∂z2

)
−
(
∂u′2

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
, (4.4)

y-momentum equation

u
∂v

∂x
+v

∂v

∂y
+w

∂v

∂z
+n

u2

rc
= −∂p

∂y
+

1

Re

(
∂2v

∂y2
+
∂2v

∂z2

)
−
(
∂v′u′

∂x
+
∂v′2

∂y
+
∂v′w′

∂z

)
, (4.5)



54 I. G. Girgis and J. T. C. Liu

z-momentum equation:

u
∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −∂p

∂z
+

1

Re

(
∂2w

∂y2
+
∂2w

∂z2

)
−
(
∂w′u′

∂x
+
∂w′v′

∂y
+
∂w′2

∂z

)
, (4.6)

where Re in the present section is redefined as the Reynolds number based on δ0,
Reδ0

= U0δ0/ν, where ν is the kinematic viscosity, n is unity on the wall and zero in
the mixing region. If we apply the steady-flow boundary-layer scale analysis to the
steady Reynolds stress energy-conversion mechanism between the steady flow and
the secondary instability, then the Reynolds stress terms that do make a difference
are in the x-momentum equation, −∂u′v′/∂y − ∂u′w′/∂z. These are associated with
−u′v′∂u/∂y and −u′w′∂u/∂z in energy-conversion mechanisms and represent energy
flow from the steady flow to the secondary instability if positive and a reverse energy
flow if negative. A thorough discussion of the conversion mechanisms is given in Yu
& Liu (1994) in connection with the linear problem; those mechanisms are the same
in the present simplified nonlinear problem.

The ideas elucidated in discussions of other nonlinear hydrodynamic stability
problems (Stuart 1958, 1960, 1962a, b) have much broader physical consequences
that also apply here. Applying those ideas to the present problem, the secondary
instabilities here are initiated at small amplitudes, and in the linear region their
Reynolds stress effect on the steady flow is negligible. As they amplify by extracting
energy from the steady flow in a three-dimensional way, they develop to an extent
that nonlinearity becomes important, as manifested in the form of modification
of the steady flow, harmonics generation and the modification of their structural
features from linear form. In the absence of the Reynolds stresses in the momentum
equations (4.4)–(4.6), the system reverts back to that of § 2 for the nonlinear steady
flow problem in the absence or presence of linear secondary instabilities.

We point out here again (Sabry & Liu 1991) that in the approximation δ0/R =
1/rc � 1, the surviving centrifugal Görtler instability mechanism due to curvature
is nu2/rc in (4.5). It plays havoc in an energy balance owing to the absence of
the Hämmerlin (1955) mechanism −nuv/rc, which would otherwise contribute to an
exchange of kinetic energy between u2/2 and v2/2, and thus nullify the apparent net
source nvu2/rc for v2/2 itself. However, nu2/rc initiates the longitudinal vortices but
remains small, in terms of energy, relative to the energy-conversion mechanism of the
Reynolds stresses.

The boundary and upstream initial conditions for the steady flow problem are the
same as in § 2 and are repeated here for completeness. Periodic boundary conditions
are imposed in the spanwise direction. The boundary conditions in the y-direction for
the wall region are

u = 0, v = 0, w = 0 at y = 0, (4.7)

u→ 1, ∂v/∂y → 0, w → 0 as y →∞. (4.8)

The boundary conditions in the y-directions for the mixing region are

u→ 1, ∂v/∂y → 0, w → 0 as y →∞, (4.9)

u→ U1/U0, ∂v/∂y → 0, w → 0 as y → −∞. (4.10)

4.4. The nonlinear secondary instability problem

The secondary instabilities start to develop weakly in the manner predicted by the
linear stability theory. At some distance downstream, however, the nonlinearity effects
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begin to grow and influence the secondary instabilities in a way that the linear stability
theory fails to describe. The nonlinear secondary instability equations, obtained by
subtraction of the Reynolds-averaged equations (4.3)–(4.6) for the steady flow from
the total flow equations, are written in physical variables in the same spirit as in
studies of nonlinear hydrodynamic stability (e.g. Stuart 1956). For δ0/R = 1/rc � 1,
the curvature effects in the continuity equation, as for the steady flow, do not appear:

continuity equation

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0. (4.11)

In the nonlinear secondary instability momentum equations, for δ0/R = 1/rc � 1,
curvature terms are neglected in the viscous diffusion and advective effects. The
latter includes the divergence of the excess ‘Reynolds stresses’ at the same frequency
as the secondary instability, which gives rise to the nonlinear effect of harmonic
generation. Neither the centrifugal mechanism of Hammerlin or of Görtler survives
this approximation for the secondary instability, as was found by Yu & Liu (1991)
and others (Hall & Horseman 1991; Park & Huerre 1995); scaling was not performed
in Liu & Domaradzki (1993) and Li & Malik (1995). In addition to simplifications
due to δ0/R = 1/rc � 1, there is also the scaling Re−1 = (U0δ0/ν)

−1 � 1 involving
the boundary-layer-like steady flow, which plays the dual role of advector of the
secondary instability momentum and as a momentum source in terms of steady
flow vorticity advected by the secondary instability velocities; only the streamwise
advection survives in this approximation. The strongest momentum sources are for
the x-momentum in terms of the vertical, or normal, advection of the spanwise steady
flow vorticity, which is common and well understood in two-dimensional instability
problems (e.g. Lin 1955), and the spanwise advection of the normal component of
the steady flow vorticity. Thus the momentum equations have the form

x-momentum equation

∂u′

∂t
+

(
u
∂u′

∂x

)
+

(
v′
∂u

∂y
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∂u

∂z

)
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′
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+

1
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∂x2
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+
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)

+
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∂
(
u′2 − u′2)
∂x

+
∂
(
u′v′ − u′v′)
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+
∂
(
u′w′ − u′w′)
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)
, (4.12)

y-momentum equation

∂v′
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u
∂v′

∂x

)
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′
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1
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(
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, (4.13)

z-momentum equation

∂w′

∂t
+

(
u
∂w′

∂x

)
= −∂p

′

∂z
+

1

Re

(
∂2w′
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∂
(
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∂y
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(
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)
. (4.14)
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Except for the nonlinear effects, (4.11)–(4.14) are identical to Yu & Liu’s (1991)
secondary instability equations, Viscosity effects are retained as is necessary to satisfy
wall-boundary conditions upstream, without further analysis of the Stokes-like wall
layer due to secondary instabilities. As was borne out in Yu & Liu’s (1991, 1994) linear
analysis, the principal mechanisms for secondary instability are the energy conversion
mechanisms from the steady flow, originating from the secondary instability velocity’s
advection of the respective spanwise and normal components of the steady flow
vorticity. Other less important mechanisms can be classified as ‘other non-parallel’
effects.

As confirmed by many experimental and numerical observations such as Swearingen
& Blaclwelder (1987), higher harmonic modes, when present, do not appear to
alter the wavelength and frequency of the initiated secondary instability. Moreover,
since the Swearingen & Blackwelder experiment indicated a dominant frequency
and streamwise wavelength, it seems that the generation of higher harmonics, when
present, has no important net effect. The contention here is that the modification
of the advecting steady three-dimensional flow by the fundamental mode is more
important than effects of cascading into higher harmonics. Thus the present study
considers the strong nonlinear effects of the fundamental mode of the secondary
instability on the mean flow in absence of the harmonics. This is similar in spirit
to the work of Stuart (1958) on plane Poiseuille flow in which the modification of
the mean flow by the fundamental was obtained via its Reynolds stresses and the
modified mean flow was shown to become more unstable than the unmodified mean
flow.

The present work can also be discussed in the light of analysis of the weakly
nonlinear theory (Stuart 1960; Watson 1960), transcending the application of this
theory to disturbances in plane Poiseuille flow, where all the important nonlinear
physical processes are identified in mathematical form. In the weakly nonlinear
theory, A1 is the fundamental amplitude, the harmonic amplitude is A2

1. Thus the
wave envelope of the harmonic is not given inertia of its own, but is determined
once the fundamental amplitude is determined. The harmonic is thus sustained by
energy transfer from the fundamental component but not from the mean motion.
In terms of energy-transfer mechanisms for the fundamental energy, proportional to
|A1|2, the nonlinear effects reside in the Stuart constants k1 + k2 + k3 (Stuart 1960),
which are coefficients of |A1|4 in the Stuart–Landau amplitude equation. The physical
mechanisms represented by the constants k1, k2 and k3 are, respectively, modification
of the mean flow, energy transfer between the fundamental and its harmonic and
modification of the fundamental component. In the present problem, the k1 effects are
calculated from the steady flow equations (4.3)–(4.6), which are solved jointly with
the k3 effects (and, in general, the k2 effects also) from (4.11)–(4.14). The harmonic
generation mechanism (k2 effects) resides in the divergence of the excess local stresses
on the right-hand sides of (4.12)–(4.14), and these effects would be absent in the
subsequent formulation according to the arguments above on the suppression of
harmonics generation. The nonlinear effects enter explicitly in (4.4)–(4.6) through the
Reynolds stress effects on the steady flow, but enter only implicitly in the secondary
instability equations (4.12)–(4.14) through the modification of advective velocities
and the vorticity of the modified steady flow. The numerical procedure is one of
‘leap frogging’: the initial secondary instability is used in the calculation of the
Reynolds stresses; the Reynolds-stress-modified mean flow is then calculated and
used to calculate a new secondary instability behaviour in the following step, and so
on. Thus each streamwise step is similar in spirit to Stuart (1958).



Mixing enhancement via longitudinal Görtler vortices 57

The wave characteristics of the initiated secondary instability are essentially given
by the local linear theory (e.g. Yu & Liu 1991), which is in good agreement with
observations; such characteristics appear to be robust in the downstream development
(Swearingen & Blackwelder 1987). We reiterate that we bypass the formalism of the
PSE (parabolized stability equations) method (Herbert 1997; Li & Malik 1995), which
presumes that the local wavenumbers are also unknown but still uses the results of the
linear theory to start the computation. The procedure requires auxiliary normalization
conditions, which are not necessarily unique, to determine the wavenumbers jointly
and iteratively with the solution of the conservation equations as the computation
progresses downstream. Although the explicit wavenumbers from such a computation
were not presented, the instantaneous streamwise velocity plots at a given wall-normal
location in the computed example of Li & Malik (1995) using the PSE method for
wall-bounded flow indicate that the wavelengths do indeed remain robust in the
streamwise direction for both varicose and sinuous modes.

The question of whether the PSE method does indeed yield ‘parabolicity’ was
addressed in part by Herbert (1997). In the present problem, the coupled conservation
equations for the steady flow and the nonlinear secondary instability with given
wavelength and frequency have not been studied but appear to be parabolic, given
the wavy representation of the secondary-instability flow quantities accompanied by
the assumption that the wave envelope varies slowly relative to the waviness.

In order to proceed, we represent the unsteady perturbations in normal-mode form,
reflecting the foregoing discussions, with fundamental wave characteristics given by
the initial local linear theory:

(u′, v′, w′, p′) = (û, v̂, ŵ, p̂) ei(αx−σt) + c.c., (4.15)

where û, v̂, ŵ and p̂ are the complex perturbation amplitudes and are functions of
(x, y, z). In the streamwise development study, we consider the nonlinear spatial growth
of the disturbances. Therefore, α is a complex number, α = αr + iαi, that combines the
wavenumber αr = 2π/λx and the spatial amplification rate αi, λx is the disturbance
wavelength in the x-direction, and σ is real and represents the disturbance frequency.
The normal-mode concept represents the disturbances as rapidly oscillating waves
propagating in the streamwise direction, represented by the exponential function in
(4.15), which is embedded within slowly varying wave amplitudes or wave envelopes.
Thus, the parabolization process here amounts to attributing the dominant streamwise
changes of flow quantities to the rapidly varying wavy part and the first derivative
of the wave envelope, rather than to the slow variations of the second derivative
of the amplitude function. By substituting (4.15) into (4.11)–(4.14), and equating
coefficients of the same order, we obtain the parabolic secondary instability equations
in spectral form. As we have argued, in the absence of harmonics, the fundamental
perturbation complex amplitudes are obtained without the explicit nonlinear effects
of the Reynolds stress terms on the right of (4.12)–(4.14). ‘Hidden’ nonlinearities enter
through the modified-mean-flow on the left-hand side of (4.12)–(4.14). For simplicity,
the spectral form of the equations is not presented here. These equations are coupled
to the steady flow system (4.3)–(4.6) and must be solved simultaneously.

4.5. Computation of the upstream initial conditions for the secondary instability

From the observations of Swearingen & Blackwelder (1987) and Tani (1962), Görtler
vortices develop downstream following a fixed spanwise wavelength, λ = 2πδ0/β,
where β is the wavenumber in the spanwise direction, even as the boundary layer
becomes turbulent (in this study λ = 1.8 cm and β = 0.461, as in §§ 2 and 3 above).
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Furthermore, according to Swearingen & Blackwelder’s (1987) observations, the sec-
ondary instabilities have periodic properties in the streamwise direction with stream-
wise wavelength λx = 2.5 cm; this yields a wavenumber αr = 0.332, and constant
frequency 130 Hz.

The computation of the spatial nonlinear development of the secondary instabilities
starts on the wall, at X = 90 cm, by using the linear stability profile to approximate
the initial conditions. Yu & Liu’s (1991, 1994) temporal linear stability analysis is
used to obtain the shape of the initial conditions, but they are recomputed here for
convenience. The Yu & Liu linear secondary instability equations are a special case
of (4.11)–(4.14) in the absence of the nonlinear effects from (i) the divergence of the
excess stresses in (4.12)–(4.14) and (ii) modifications of the steady flow velocity by the
secondary instability, and are thus independent of the steady flow probem (4.3)–(4.6);
the local steady flow velocity is given. After the normal-mode representation, Yu &
Liu (1991) considered only a parallel flow and did not retain the x-derivatives of the
wave amplitudes. Here we shall consider only the most amplified mode, the sinuous
mode, and follow Yu & Liu (1991) in their representation of the sinuous-mode
perturbations as follows:

(û, v̂, p̂) =

nz∑
m=0

(u1m, v1m, p1m) sin(mβz), ŵ =

nz∑
m=0

w1m cos(mβz), (4.16)

where nz is the number of points in the spanwise direction and the subscript 1
represent the sinuous mode in Yu & Liu’s notation. The linear stability solution shows
that the most amplified sinuous mode has a frequency σr = 0.221; this corresponds
to almost 130 Hz, coinciding with the experimental conclusion. It also shows that
the temporal amplification rate value is σi = 0.043. The temporal amplification rate
arising from the linear stability analysis is related to the spatial amplification rate to
be employed to evaluate the spatial growth rate of the secondary instabilities (Gaster
1962). Since in the present problem only a single mode is present, the group velocity
is replaced by the phase velocity σr/αr . The spatial amplification rate αi is obtained
from

αi = −(σi/σr)αr.

4.6. Computational procedures

The numerical computations started with the linear stability problem on the wall
at X = 90 cm, but linear stability results at X = 85 cm were also obtained in order
to evaluate x-derivatives of the disturbance in starting the numerical solution. The
linear stability eigenvalue problem was solved implicitly using a second-order finite
difference scheme with a 102×51 non-uniform grid in the (y, z)-plane to cover 50δ0 in
the y-direction and one wavelength in the z-direction. The LZ algorithm developed by
Kaufman (1975) was employed to compute the complex eigenvalues and eigenvectors
for the secondary stabilities.

Subsequently, the Reynolds stresses of the most amplified sinuous mode were
computed and utilized to modify the steady flow equations (4.3)–(4.6) at the same
streamwise location, X = 90 cm. The artificial compressibility technique (Chorin 1967)
used in §§ 2 and 3 above is also employed here with the same grid arrangement to
compute the nonlinear downstream development of the steady flow for the wall-
bounded and the mixing regions, taking into consideration the nonlinear effects of
secondary instabilities.
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The nonlinear spatial downstream development of the sinuous mode of the sec-
ondary instabilitiy is then computed at x+ dx using the ‘spectral form’ of the
secondary instability equations. Calculations are performed using implicit second-
order finite difference discretization, which is unconditionally stable. The backward
Euler scheme is used in the x-direction. The resulting complex linear algebraic
equations are solved using the LU factorization technique along with the iterative
refinement method to improve accuracy. Subsequently, the steady flow equations are
computed at location x+ dx. This calculation process continues downstream. In the
nonlinear solution of the secondary instabilities, similarly to the leapfrog concept, the
steady flow quantities used at location x are modified by the secondary instabilities
while the steady flow quantities used at x+ dx are not. The dimensionless value
of dx used was around 0.04. The system of nonlinear partial differential equations
was solved in its dimensionless form. In the results, dimensional X is used for easy
comparison with the literature.

5. Secondary instability: results and discussion
Here we describe the secondary instability development downstream in the mixing

region and assess its role in mixing enhancement. In § 3, it was found that for a set of
experiment conditions, optimal mixing enhancement could be achieved by the steady
longitudinal vorticity elements through the selection of an optimal trailing-edge length
Xoptm. The most amplified secondary instability and its modification of this particular
optimal steady configuration is studied here. It is considered to be forced, imposed at
Xoptm = 90 cm and released into the mixing region. Computations are for U1 = 0.

5.1. Flow structure

The r.m.s. value of the secondary-instability velocity initial conditions is shown in
figure 11(a), and the streamwise velocity component, u′rms, is shown in figure 11(b) for
a number of different downstream locations in the mixing region in the (y, z)-plane,
where the most amplified linear stability theory solution at X = 90 cm on the wall
is used as an initial condition profile. The streamwise coordinate, X, is dimensional
in the figures and is measured from the trailing edge. As shown in figure 11(b),
the initial u′rms at X = 0 (for Xg = 90 cm) coinciding with the results of Swearingen
& Blackwelder (1987) and those of Yu & Liu (1991, 1994), possesses two regions
with high u′rms values located in the steady flow low-speed region near the wall and
on each side of the symmetry line at Z = λ/2. The u′rms distribution also has two
secondary regions with high u′rms values that develop away from the interface line.
As the secondary instability amplifies in the mixing region, a third region starts to
form on the lower side of the mixing region. The other two velocity components v′rms
and w′rms are shown respectively in figures 11(c) and 11(d ). The computation of the
secondary instability is terminated 30 cm from the trailing edge as its amplitude and
energy reach saturation at relatively large values of 12% to 15% of the free-stream
velocity values.

Yu & Liu (1994) showed that the structural features of the sinuous mode, similar
to Rayleigh’s jet instability when viewed in the (x, z)-plane of the three-dimensional
flow field, follows the dominant production mechanisms of these modes, which in turn
track the dominant velocity gradients or rates of strain of the steady flow. In this case,
the structural features of the sinuous mode r.m.s. streamwise velocity closely follow
the three-dimensional features of ∂u/∂z, as shown in figure 12, where the streamwise
development of ∂u/∂z and u′rms are compared in their respective (y, z)-planes. The
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Figure 11. Nonlinear development of the r.m.s. of the secondary instability velocities in the
cross-sectional (y, z)-plane in the mixing region as a function of the streamwise distance: outer
contour value is 0.01 with increments of 0.01. (a) Initial mixing conditions Xg = 90 cm, (b) u′rms,
(c) v′rms, (d ) w′rms.

u′rms is associated with the intense ∂u/∂z located on both sides of the shoulders and
the stems of the iso-u mushroom contours. We see below that the structure of u′rms is
further explained via energy-conversion mechanisms.

The contours of the total steady streamwise velocity u in the mixing region are
shown in figure 13 for a number of different downstream locations. These are the
iso-u contours of the optimal steady flow longitudinal vorticity elements that are
modified by the nonlinear secondary instability. The modified contours here should
be compared to the unmodified steady flow problem without secondary instability
shown in figure 3. In terms of energy transfer, the modified iso-u contours are slightly
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Figure 11(c, d). For caption see facing page.
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Figure 12. Contours of mean flow rate of strain, ∂u/∂z (left) and the fundamental sinuous mode
secondary instability r.m.s. streamwise velocity u′rms (right) in the mixing region. (a) X = 5 cm, (b)
X = 15 cm.

asymmetrical about the z-axis in figure 13. However, they are symmetrical about the
line of symmetry in z in the linear region of secondary instability. They are no longer
‘perfectly’ symmetrical in the nonlinear region due to the nonlinear interactions with
the finite-amplitude secondary instability through the divergence of Reynolds stresses
in the momentum equations (4.4)–(4.6). Since u′ and v′ are changing in z as sin(mβz)
and w′ is changing as cos(mβz), u′2, v′2, w′2 and u′v′ are symmetrical, but both
u′w′ and v′w′ are asymmetrical about z = 0. This asymmetrical behaviour and the
asymmetrical z-derivatives manifest themselves explicitly as asymmetrical ‘sources’ in
the momentum equations.

In the mixing region the nonlinear secondary instability significantly modifies the
mushroom shape of the steady streamwise velocity iso-u contours as they develop
downstream, as shown in figure 13. The upper region of the iso-u contours is severely
modified by the strengthening u′rms in the same region of figure 11. As shown by

Yu & Liu (1994) in the linear theory, energy from u2/2 goes directly to u′2/2



Mixing enhancement via longitudinal Görtler vortices 63
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Figure 13. Nonlinear development of the total streamwise velocity contours in the cross-sectional
(y, z)-plane in the mixing region. Outer contour has value 0.9 with a decrease of 0.1.

predominantly via the −u′w′∂u/∂z energy-conversion mechanism for the sinuous
mode. The contours of the dominant energy-conversion mechanism u′w′∂u/∂z, as
well as of u′v′∂u/∂y, are shown in figures 14(a) and 14(b), respectively. Regions of
intensive energy-conversion coincide with depletion of u and intensification of u′rms.
The regions near the base of the modified iso-u mushroom appear to be broadened
in figure 13, as u′rms (figure 11b) weakens in the same region, where energy is locally
returned to u2/2 from the secondary instability (figure 14). Note that the secondary
instability structures in figure 11 do not protrude very far below the y = 0 line;
however, the modified u protrudes farther into the bottom of the shear layer than the
unmodified u (figure 13). This could be interpreted as enhanced momentum diffusivity
for u due to the cumulative effects of momentum transfer by the ‘microstructure’ of
the secondary instability.

5.2. The role of secondary instability in mixing enhancement

The spanwise-average profile of the mean flow, ū, is obtained but not shown. The
resulting S-shaped inflectional profile is generated from the vortices upward advection
of the low-momentum fluid, which still persists well into the mixing region. The
secondary instabilities increase the mixing enhancement since ū, in the upper mixing
region, reaches the value of 1.0 at shorter streamwise distances and spreads further
into the lower mixing region.

The mixing enhancement parameters ūcl , η and M are computed from the modified
steady flow and are compared with the results from § 3 in order to assess the role
of the secondary instability in the mixing enhancement process. Figure 4 compares
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Figure 14. Contours of the dominant energy-conversion mechanism. Values are indicated as
(outer contour value, increment). (a) u′w′∂u/∂z. (b) u′v′∂u/∂y.

the centreline value of the streamwise velocity, ūcl (dashed line), to the same velocity
without the effect of the secondary instability (solid lines). Predictably, the centreline
velocity increases dramatically and reaches the value of 0.83 at 30 cm behind the wall
trailing edge, an increase of almost 50% over the results in § 3.

The mixing efficiency is shown in figure 5. The secondary instability increases the
mixing efficiency by about 750% to η ≈ 5.0. This is due in part to the increase in the
value of the streamwise vorticity, ωx. For example, 30 cm downstream in the mixing
region, the circulation (calculated for one of the counter-rotating vortices) increase
from to 0.104 m2 s−1 to 0.333 m2 s−1. Moreover, the mixedness parameter is increased
by almost 100%, as shown in figure 6.

5.3. Global energy-balance mechanisms: energies of the secondary instability and of
the modified steady flow

The kinetic energy equations for the disturbance velocity components (u′, v′, w′) are
obtained from the momentum equations for the nonlinear secondary instabilities.
Rather than obtaining the energy balance from the scaled and simplified momentum
equations (4.12)–(4.14), we use the full equations so that we can assess unimportant
scaled mechanisms. Consequently, the total kinetic-energy-advection equation for
e = (u′2 + v′2 + w′2)/2 is obtained. Since the secondary instability develops spatially
downstream, the Reynolds averages, as discussed in § 4, are defined as averages in
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time. Accordingly, the time-averaged total kinetic-energy-advection equation can be
written as follows:

dEu/dx = Ip − Id + Ivd + Itd, (5.1)

where

Eu =

∫ ∞
−∞

∫ λ

0

uē dz dy

is the secondary-instability energy-advection integral, ē is the time average of e, and
λ is the spanwise wavelength. The production, or more precisely, the energy-exchange
integral is

Ip = −
∫ ∞
−∞

∫ λ

0

(
u′2
∂u

∂x
+ v′2

∂v

∂y
+ w′2

∂w

∂z
+ u′v′

(
∂u

∂y
+
∂v

∂x

)

+ u′w′
(
∂u

∂z
+
∂w

∂x

)
+ v′w′

(
∂v

∂z
+
∂w

∂y

))
dz dy, (5.2)

the viscous dissipation integral is

Id =
1

Re

∫ ∞
−∞
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0


(
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)2
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(
∂u′
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)2
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)2
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∂w′
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(5.3)

the streamwise viscous diffusion of secondary instability energy is

Ivd =
1

Re

d2

dx2

∫ ∞
−∞

∫ λ

0

ē dz dy, (5.4)

and the ‘turbulent’ diffusion of secondary instability energy is

Itd = − d

dx

∫ ∞
−∞

∫ λ

0

u′(p′ + e) dz dy. (5.5)

The left-hand side of (5.1) represents the streamwise rate of change of the streamwise
advection of total kinetic energy, dEu/dx. In spatially developing disturbances, it is
the increase or decrease of Eu that is dictated by the energy balances rather than the
total secondary instability kinetic energy Esi itself, where Esi is defined as

Esi =

∫ λ

0

∫ ∞
−∞
ē dy dz (5.6)

for the mixing region. In temporally developing disturbances (Sabry & Liu 1991; Liu
& Domaradzki 1993; Park & Huerre 1995), it is precisely Esi that is determined by the
energy-balancing mechanisms that are similar, though not identical, to the right-hand
side of (5.1). There, the streamwise-periodic averaging replaces the time average in
which the streamwise diffusion mechanisms, (5.4) and (5.5), are absent.

The energy production or energy exchange mechanism in (5.2) was evaluated
using the solution of the full momentum equations for the fundamental component.
The total production integral is shown as a solid line in figure 15. In the region
X < 17 cm, Ip > 0, representing a net energy transfer from the steady flow to the
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secondary instability. In the region X > 17 cm, Ip < 0, implying that net energy is
transferred back to the steady flow from the secondary instability. In an ‘inviscid’
sense, the secondary instability becomes damped. Such a phenomenon is well known
(see Liu 1988) in nonlinear instability of the Kelvin–Helmholtz type (with its dominant
vorticity axis perpendicular to the streamwise direction) in spatially developing free-
shear flows. The development of a positive then a negative production mechanism was
first observed by Ko, Kubota & Lees (1970) in their theoretical and computational
study of spatial development of finite disturbances in the laminar wake problem and
was seen more recently in three-mode interactions in a mixing layer (Nikitopoulos &
Liu 2001). Liu (1971) and Mankbadi & Liu (1981) noticed the same mechanism in
the free turbulent shear flows.

The contributions to the total production integral in (5.2) were evaluated:

Ip1 = −
∫ ∞
−∞
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0

(
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)
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∫ ∞
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Figure 15 shows the contributions to the total production integral Ip. The dominant
contribution comes from Ip6 for the sinuous fundamental mode, as expected. Except
for small modifications, the total production integral Ip is very nearly tracked by
Ip6. However, Ip6 is supplemented by positive production due to the shear instability
mechanism Ip4. These two production mechanisms were anticipated by the retention,
through scale analysis, of the cross-sectional advection of the dominant steady-flow
vorticity by the secondary instability in the x-momentum equation (4.12), (v′∂u/∂y +
w′∂u/∂z). These dominant mechanisms of mean vorticity advection, which lead to
the dominant production mechanisms due to ∂u/∂z in Ip6 and ∂u/∂y in Ip4, were
identified earlier in wall-bounded secondary instability discussions (e.g. Sabry et al.
1990; Yu & Liu 1991, 1994).

Also shown in figure 15 are Ip3 and Ip8, which are nearly zero during the net
amplifying stage (Ip > 0). In the later stages of development where Ip has changed
sign to Ip < 0, both Ip3 and Ip8 become active, though negligibly compared to
Ip6, in augmenting the negative production mechanism of Ip6. There is a small X-
region in which Ip reverts to positive production once again. Positive and negative
production mechanisms are well known to prevail even in two-dimensional distur-
bances in two-dimensional developing free shear flows (e.g. see the discussions in
Liu 1988).

The Reynolds number in the present context is Re = 451.45 and the overall viscous
diffusion mechanism in (5.4), Ivd, is of the order 10−9 and is negligible compared with
Ip values of about 10−3–10−4. In the absence of higher harmonics, the nonlinear stress
term would not appear in the momentum equations of the fundamental component
and thus the triple correlation terms reflecting ‘turbulent diffusion’ of e would be
absent. In this case the surviving turbulent diffusion mechanism in (5.5) is

Itd = − d

dx

∫ ∞
−∞

∫ β

0

u′(p′) dy dz.

A numerical evaluation of the rate of change of the energy-advection integral,
dEu/dx, in (5.1) is shown in figure 16, along with Ip. Because of the large amount
of data that could not be stored, the integrands of Itd and of the viscous dissipation
integral, Id, were not evaluated individually. However, their net effect can be obtained
from (5.1) as −(Id− Itd) ∼= dEu/dx− Ip . The behaviour of the net value of −(Id− Itd)
is also shown in figure 16. Since viscous dissipation is positive definite, −Id 6 0, the
‘turbulent diffusion’ effect Itd changes sign to play an important role downstream in
balancing the net negative and then positive production in the downstream region. In
this case dEu/dx reaches nearly constant values in the region computed.
Esi, the total secondary instability kinetic energy defined in (5.6), is shown in

figure 17. It amplifies linearly at first on the logarithmic scale, but the growth rate
decreases downstream in the region, almost corresponding to the reversal in sign of Ip
in figure 15, and increases somewhat again as −(Id − Itd) increases to positive values
that counteract Ip. Eventually Esi saturates at a value of about 10−3. This behaviour
is somewhat typical of nonlinear instability development in shear flows (e.g. Stuart
1960; Liu 1988). A less reliable indicator of instability wave growth is the maximum
value of u′rms at any point in the cross-sectional (y, z)-plane for each streamwise
location; the quantity u′rms)max, also shown in figure 17 for comparison, grows linearly
in the initial regions but intensifies downstream until it reaches a maximum value of
(u′rms)max ≈ 0.14: it then starts to decrease. Unlike Eu, or Esi in the temporal problem,
(u′rms)max does not readily yield relations obtainable from conservation equations.
However, (u′rms)max itself is easily measured experimentally.
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It was shown in § 5.1 that the steady flow ‘mushrooms’ were locally modified by
the presence of the nonlinear secondary instability, particularly through the local
energy-transfer mechanisms. The global energy of the steady flow without secondary
instability, E, is shown in figure 9 for the optimal case (the line indicated by Xg =
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90 cm). In comparison, the modified E due to secondary instability is also shown in
figure 9 as a dashed line. As the production of secondary instability energy becomes
intense in the early development, E therefore decreases. As the secondary instability
returns energy back to the steady flow (see figure 15 and 16), E increases and
then decreases again according to the changes in sign in the production mechanism
(figure 16).

5.4. The instantaneous mushroom oscillations

Peerhossaini & Wesfried (1988) used light-sensitive fluorescent dye in a curved water
channel to observe what appears to be the total flow structure of dye concentration in
nonlinear Görtler vortices along the concave wall. The Schmidt number for fluorescene
in water is of the order of 103, so that the concentration structure appears as very thin
mushrooms but embedded in an iso-total streamwise velocity mushroom structure
that is much broader (see, for instance, the discussion of scalar advection for this
problem in Liu & Sabry 1991 and Liu & Lee 1995). In the order-unity Schmidt-
number range for smoke seeding in air (Aihara, Tomita & Ito 1985; Ito 1985),
the smoke patterns very nearly capture the full iso-streamwise velocity mushroom
structure quantitatively measured by the hot wire (Swearingen & Blackwelder 1987).
As already discussed, the analogy between dimensionless scalar advection and the
streamwise velocity, for similar initial and boundary conditions, is complete for the
steady problem for Prandtl and Schmidt numbers unity (Liu & Sabry 1991); but
for the unsteady, secondary instability problem, the failure in the analogy lies in the
streamwise pressure gradient due to the secondary instability fluctuations, unless one
makes an artificially long-streamwise-wavelength approximation. However, even in
the absence of exact analogies, it can still be conjectured that the oscillating scalar
mushroom structure observed at a fixed streamwise location would somewhat resemble
the total streamwise velocity structure for gases. In the case of large Schmidt number
for liquids, the thin mushroom structure is embedded in a broader but invisible iso-
streamwise velocity structure (Liu & Lee 1995). The oscillating mushrooms observed
by Peerhossaini & Wesfried (1988) are indeed a manifestation of nonlinear secondary
instability predominantly of the downstream-propagating wavy-sinuous mode (Hall
& Horseman 1991; Yu & Liu 1991, 1994; Liu & Domaradzki 1993; Li & Malik 1995;
Park & Huerre 1995). As such, light sheet observation (Peerhossaini & Wesfried 1988)
at a given streamwise location over a perpendicular cross-section (in the (y, z)-plane)
shows that the mushroom structure oscillates in the spanwise direction as the wave
disturbance enters and leaves the fixed cross-sectional plane.

To depict such an oscillation of the total streamwise velocity that is nonlinearly
modified by the secondary instability in the mixing region, the total iso-streamwise
velocity contours of u(y, z; x) + u′(y, z, t; x) are shown in figure 18 for one cycle of
the oscillation. This depiction arises from the nonlinear calculations of the modified
steady flow u and of the nonlinear secondary instability u′. To fix ideas, the cross
sectional picture was taken at X = 25 cm measured from the trailing edge. From
(4.2), the time scale is T ∗ = δ0/U0 and the dimensionless time is t = T/T ∗; the
frequency is 130 Hz and the dimensionless frequency is σ = 130 Hz/2πT ∗ = 0.221.
The six plots correspond to t = 0, 5/24, 9/24, 13/24, 17/24, 21/24 of 2π/σ. In real
time, T = tT ∗ = 0.00132/5 t = 2.64 × 10−4 t and varies from 0 to 7.5 × 10−3 s. The
oscillations appear to be more vigorous in the high-speed region where the local mean
rates of strain are the highest.

The computations were carried out with spanwise-periodic boundary conditions
for a single mushroom, and consequently the resulting oscillations are about a fixed
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Figure 18. Nonlinear development of the total streamwise velocity (steady plus the unsteady
secondary instability velocity) at different times, at the X = 25 cm cross-section in the mixing
region. Outer contour has value 0.9 with a decline of 0.1.

mushroom base. In actual experiments in wall-bounded flow, Peerhossaini & Wesfried
(1988) observed that the mushroom bases are also subject to oscillation. One can
conjecture that in the mixing region the mushroom bases would also be subject to
oscillations. In order to capture this feature of the base oscillations, the domain of
numerical computations may well have to be expanded to include several of the
mushroom structures in the initial streamwise region.

6. Concluding remarks
The formulation and numerical computation of the nonlinear development of

steady Görtler vortices and their most amplified secondary instability in a mixing
region have been developed and the results are used to understand their role in the
mixing enhancement process. Quantitative assessment of mixing enhancement is made
through the mixing efficiency and mixedness (and stretching of the interfacial surface
in the steady case). Through the study of these parameters the optimal design can be
determined, depending on the nature of the problem and the purpose of the mixing
process. It is found that significant mixing enhancement can be achieved. In order
to avoid the associated penalties of trailing-edge deformation, it will be beneficial to
examine the use of the present concept in different geometrical situations, for example,
round and rectangular jets, to bring the present class of studies closer to applications.

The present work studied a basically laminar reference flow over which entrainment
and mixing enhancement through longitudinal vortices occur. The latter are essentially
unstable ‘transitional’ structures whose streamwise lifetime is great enough to enhance
mixing. The flows in real applications are most likely to be in the turbulent shear
flow region. Even in turbulent shear flows, similar structures can be excited as they
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are manifestations of shear flow instabilities that are augmented by turbulent rather
than viscous dissipation (e.g. Liu 1988).

In wall-bounded flows, Tani (1962) found that longitudinal vortices, following a
fixed spanwise wavelength, regenerate themselves even as the boundary layer became
turbulent. Tani’s argument is that the local Görtler number and wavenumber increases
at a fixed wavelength continue until the boundary layer becomes turbulent. Then the
appropriate ‘eddy viscosity’ of the turbulent flow lowers the local Görtler number and
wavenumber, so that amplified longitudinal vortices develop again, but in a turbulent
flow. Bradshaw (1973) discussed many interesting phenomena in turbulent flow as a
result of streamline curvature. The observed large-scale coherent longitudinal vortices
in concavely curved turbulent boundary layers in low-speed flow (So & Mellor
1975; Tani 1992) and in high-speed flow (Zakkay & Calarasee 1972) warrant further
systematic studies of the repetition of Görtler instability in turbulent shear flows.
Turbulent Taylor–Couette flow was observed much earlier by Pai (1939, 1943) and
MacPhail (1941, 1946), in the earliest observations of ‘coherent structures’ in turbulent
shear flows. Spanwise perturbations on turbulent mxing layers were experimentally
studied by McCormick (1992) and Bell & Metha (1992, 1993). The details of the
interaction between large-scale, coherent longitudinal vorticity elements and fine-
grained turbulence may well be approached as in Liu (1988) for disturbances with
axis normal to the main shear in which turbulence is given its own inertia. Thus it
may be possible to extend the present class of problems to the turbulent shear-flow
region.

The generation of longitudinal vortices in the mixing region at the outset is
intimately related to ideas in ‘bypass transition’ (see for instance Matsubara &
Alfredson 2001), in which the streak structures are similar to the secondary instability
structures here and in Yu & Liu (1991, 1994). In such studies, the smaller-scale
secondary instabilities are brought about by the three-dimensional structure of intense
strain rates of the basic steady flow, independent of any effects of streamline curvature
at a much larger scale.
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Görtler vortices. Phys. Fluids 6, 3353–3367.

Bertolotti, F. P., Herbert, TH. & Spalart, P. R. 1992 Linear and nonlinear stability of the Blasius
boundary layer. J. Fluid Mech. 242, 441–474.

Bippes, H. 1972 Experimentelle Untersuchung des laminar-turblenten Umschlags as einer parallel
angeströmten könkaven Wand. Sitzungsherichte der Heidelberger Akademie der Wissenschaften
Mathematischnaturwissenschaftliche Klasse 3, pp. 103–180 (also NASA TM -75243, 1978).
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